乘风破浪 > 玄幻奇幻 > 走进不科学 > 第392节
  在他们围聚的中心处,便是准备好的一些设备。
  徐云要求的这套设备其实非常简单,一共有四个模块分布在四个不同的区域:
  首先便是徐云所在的操作台。
  这里有一张桌子,一支固定在桌上的手电筒,一个镀了银的透镜,一架望远镜。
  第二个区域在他正左侧……也就是九点钟方向二十米左右。
  那里立着一块成像板。
  第三个区域是左前方十点半钟方向。
  那儿放着一块不停旋转的旋转镜,与成像板的连线正好与操作台和成像板的连线垂直。
  旋转镜、成像板、操作台,正好形成一个“l”型。
  至于最后一个模块则在五公里外,那里放着一块凹面镜,由三一学院的几位助教看守。
  凹面镜和旋转镜之间的连线与旋转镜和成像板连线垂直,也就是在‘l’左边那一丨的顶部横拉一条垂直的线。
  看到这里。
  想必有部分聪明的同学已经猜到到了。
  没错。
  徐云这次准备使用的,正是傅科发明的旋转镜测光法!
  上头提及过。
  小牛和惠更斯计算出来的光速数值,在很长的一段时间内都被视作权威。
  这种情况直持续到了1849年。
  当时一个叫做阿曼德·斐索的科学家受阿拉果启发,想出了一个精密的实验,从而打破了这个‘权威’:
  他设计了一个齿轮,将它放在了光源和镜子之间。
  当齿轮不动的时候,从光源发出的光从齿轮的缝隙中穿过。
  在经过镜子反射之后,又会穿过同一个缝隙被观测者观察到。
  当齿轮开始转动并达到一定的转速之后,光线在返回时,原先的齿缝刚好转过。
  光线就会打在齿轮上而无法被观测。
  如果继续将齿轮的转速加快,此时光线就会穿过下一个齿缝再次反射回来。
  整个过程不需要考虑人的视觉反应速度,只需要知道齿轮的齿数、转速以及观测者与镜子之间的距离,就可以计算出光速。
  不过受工艺影响,这个方法还是有点问题。
  毕竟是在用齿轮遮挡光嘛,导致最终测出来的光速大概有5%左右的误差。
  所以后来的傅科——也就是搞出傅科摆的那位大佬,他想了想,就把齿轮改成了旋转镜。
  同时在流程上又进行了部分优化,将精度锁定到了28.9万公里。
  等到了迈克尔逊时期,他便又换成了八面镜,使得精度再一次得到了提高。
  徐云在图书馆查资料的时候曾经发现。
  副本中由于世界线变动的缘故,给阿曼德·斐索启发的阿拉果并未提出测光的思路,他在大学毕业后便一头扎进了波动说的怀抱。
  自然而然的。
  阿曼德·斐索也就没有在一年前完成自己的齿轮测光实验。
  齿轮测光都尚且没有,就更别说傅科了:
  傅科比斐索大概晚一年半完成了旋转镜测光,傅科的灵感正是源自斐索的论文。
  所以在图书馆的时候,徐云就已经做好了预案,准备将光速测量作为一个切入点。
  只是没想到,这个机会会来的如此之快。
  当然了。
  或许有同学会问:
  不对啊。
  迈克尔逊的精度不是更高吗,为什么不用八面镜呢?
  原因很简单,说到底就两个字:
  场地。
  你别看斐索测光的步骤好像很简单,示意图上的距离似乎很短。
  实际上由于光速实在太快,齿轮根本挡不住光线,斐索的实验一开始是失败的。
  他只能不断延长实验距离和齿数,以及提高齿轮的转速,希望能挡住反射回来的光线。
  后世网上能找到斐索测光的图示,看起来距离好像很短,但实操中的光路达到了8633米。
  至于八面镜嘛……
  不好意思。
  22英里,多来两个都能去伦敦了。
  因此几经思考之下。
  徐云最终选择了傅科发明的旋转镜测光法。
  其实旋转镜测光法的光路最短可以缩减到20米左右,但徐云为了能让实验更具热度,便选择了五公里这个剑桥大学能腾的出来的数值。
  在20米的场地内做实验,和在五公里的场地内演示,吸引来的观众完全将是两个概念。
  反正光路和旋转镜转速是符合正相关的,光路一长,对应调整好转速就完事儿了。
  当徐云来到场地边上时。
  法拉第正与斯托克斯一起站在操作台边,皱着眉头,沉默不语。
  他们的表情带着明显的疑惑,但也隐约可见少许的明悟,似乎将将触碰到了某些边界一般。
  徐云见状走上前,对着几位大佬依次打招呼:
  “阿尔伯特陛下,惠威尔院长,法拉第先生,斯托克教授,晚上好。”
  “嗯?”
  发觉徐云出现,法拉第顿时像是读者见到了作者更新一般,一把将他拉到了身边:
  “罗峰同学,你这套设备的思路是什么?快和我详细说说!”
  见此情形。
  徐云尚且未作表示,一旁脸色始终有些紧绷的威廉·惠威尔,心头不由微微一松。
  威廉·惠威尔虽然发明了‘科学家’这个词,不过他本身的主攻方向还是在哲学领域。
  他在物理这块的知识虽不算一无所知,却也相对有些贫瘠。
  因此他虽然全程参与了这套设备的准备过程,心中却始终没有底。
  但从法拉第的这番话来看……
  徐云准备的这套设备,似乎还真有些说头?
  徐云的手腕被法拉第拽的有些疼,不过他也不好意思让对方松手,只好沉吟片刻,对法拉第说道:
  “法拉第先生,这套设备是肥鱼先祖设计的光速测量体系,叫做旋转镜测光法。”
  接着他又一指斜对面的旋转镜,解释道:
  “首先呢,光源处开始打光,调整旋转镜的位置,让它能将光源的光正好直射到五公里外的凹面镜圆心。”
  “这样一来,这段光会先到达凹面镜,然后返回到旋转镜。”
  “回射的光经过旋转镜折射,会打到我们身边的成像板上。”
  “我们只需逐渐调整旋转镜的转速,进而调整光斑的位置就行了。”
  “等到光斑的位置移动到最佳,我们便可以搜集数据,开始计算光的速度。”
  法拉第一边听一边眨眼,等到最后,眨眼的频率已经和振动棒似的了。
  片刻过后。
  他无视了身边的阿尔伯特亲王,旁若无人的走到操作台边,拿起笔和纸画起了示意图。
  “光源s……半镀银的镜面m1……”
  “透镜l……旋转镜m2……”
  “m2反射到到凹面反射镜m3……”
  随后他的笔尖顿了顿,看向徐云,问道:
  “m3镜面的曲率中心在哪里?”
  徐云一指旋转镜,毫无迟疑的答道:
  “镜面的o轴上,3/4的位置。”
  法拉第没说话,呼的一下又计算了起来:
  “o轴……那就没错了,会发生对称反射……”
  “s′点产生光源的像左移……”
  一旁的斯托克斯与其他几位教授见状,不由也走到了法拉第身边,讨论起了示意图。
  在场的大佬们不说眼下全球顶尖,至少普遍都处于物理领域的第一梯队,能力自然是不用赘述的。
  他们想不到试验步骤属于灵感问题,和理论知识没太大关系。
  如今徐云将整个操作流程一公布,以他们的能力自然很快便可以分析出具体的原理了。
  “……所以反射光转过的角就是光路的近似角了?”
  “不不不,应该是它的两倍……”